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an update on global mining land 
use
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The growing demand for minerals has pushed mining activities into new areas increasingly affecting 
biodiversity-rich natural biomes. Mapping the land use of the global mining sector is, therefore, 
a prerequisite for quantifying, understanding and mitigating adverse impacts caused by mineral 
extraction. This paper updates our previous work mapping mining sites worldwide. Using visual 
interpretation of Sentinel-2 images for 2019, we inspected more than 34,000 mining locations 
across the globe. The result is a global-scale dataset containing 44,929 polygon features covering 
101,583 km2 of large-scale as well as artisanal and small-scale mining. The increase in coverage is 
substantial compared to the first version of the dataset, which included 21,060 polygons extending over 
57,277 km2. The polygons cover open cuts, tailings dams, waste rock dumps, water ponds, processing 
plants, and other ground features related to the mining activities. The dataset is available for download 
from https://doi.org/10.1594/PANGAEA.942325 and visualisation at www.fineprint.global/viewer.

Background & Summary
Driven by the growing global demand for raw materials1, mineral extraction has expanded particularly into 
biodiversity-rich ecosystems in the past two decades2, and demand trends are projected to further increase3,4. 
Mining can cause a wide range of adverse impacts during mining operation and after closure, e.g. fragmenting 
the landscape and polluting soils and water with effects on human settlements, agriculture plantations, and 
natural ecosystems5. Mapping the global mining areas is increasingly important for quantifying pressures of 
mineral extraction on biodiversity6–9, land-use modelling10, estimating the impacts of global supply chains and 
sustainable resource use11–13, for risk assessments of major environmental disasters on mining areas14,15, and 
planning and reinforcing mine reclamation16.

The increasing availability of high-resolution Earth observation data and new machine learning approaches 
has allowed mapping and monitoring of mining land use and its related environmental impacts on a local or 
regional scale17,18. However, automatically mapping mining areas on a global scale is challenging because they 
are composed of a set of heterogeneous land cover types17. Mining areas are used for various purposes, including 
the mine itself (e.g. open cuts where the minerals are extracted), waste dumps (e.g. tailings dams, waste rock 
piles), water ponds, and industrial processing facilities. Additionally, different minerals (e.g. coal, copper, or 
gold), extraction and processing methods, and landscape characteristics also increase intraclass variability, chal-
lenging automated mapping approaches using Earth observation data on a large scale.

Visual interpretation of high-resolution satellite images has been used as an alternative to producing three 
global mining land use datasets. The first dataset mapped the 295 major mine sites worldwide, adding a total 
area of 3,633 km2 19. The second data source mapped a total area of 31,396 km2 including active and inactive 
mining sites20 and the third dataset, described in our previous article21, covered 6,201 active mining sites that 
add to 57,277 km2. These three datasets are not comparable because they were derived using different satellite 
data sources acquired at different times and with distinct spatial resolutions. In addition, each dataset covered 
a different subset of mining locations, which can lead to underestimating the global mining land use because 
subnational mining activities are usually underreported compared to national accounts2,22.

Here we present a new dataset that improves global mining land use accounting by significantly expanding 
our previous global-scale dataset of mining sites21,23. The data update includes 44,929 polygon features covering 
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101,583 km2 of large-scale mining (LSM) as well as artisanal and small-scale mining (ASM). We followed a 
similar methodology based on visual interpretation to map all 34,820 mining coordinates reported in the SNL 
Metals & Mining database24. Compared to the first version, this is a substantial expansion, which covered only 
6,201 coordinates of mines reported as active in the SNL database. As in the previous version, we mapped all 
land cover types related to mining without distinguishing them within the polygons. Although significantly 
expanded, our dataset still does not cover all existing mines worldwide, as we only inspected areas within a 
10 km buffer around the coordinates from SNL24. However, to date, our updated dataset provides the most com-
prehensive information on global mining land use, including openly available georeferenced mining locations.

Methods
Version 2 of the global-scale mining area dataset builds on the polygons from the first data release23 and follows 
a similar methodology. We updated the areas in the first version using satellite images from 2019 and added 
new areas not included in the previous version. We inspected all 34,820 coordinates reported in the SNL data-
base, substantially expanding the coverage compared to Version 1, which covered only 6,201 coordinates of 
mines reported with the status “active” or having any reported production between 2000 and 2017 by SNL21. We 
inspected all SNL coordinates in the second version because several SNL locations with “inactive” status and no 
reported production have clear ongoing mining activities visible in satellite images. Therefore, inspecting all SNL 
coordinates independently from their reported status was critical to provide a more comprehensive overview 
of the global mining land use. This data update also improved the coverage of ASM areas, which were almost 
absent from the first version because most ASM activities do not report production or activity in the SNL data-
base, although their approximate coordinates are reported.

Study area. To make the visual interpretation of images viable on a global scale, we limited the area of inspec-
tion to a 10 km buffer around the coordinates in the SNL database. Based on our previous experience21, this buffer 
size is sufficient to cover large mining sites expanding over several kilometres and also takes into account the 
imprecision in the SNL coordinates that can be up to 3 km distant from the actual mining sites7,8. We mapped all 
mines identified inside or intersecting the buffers’ borders, including areas that start inside the buffer and extend 
beyond its limits. This protocol was adopted to make sure mines that extend over long distances would be well 
captured, e.g. ASM mining following deposits on rivers and streams.

Mining areas. We defined mining areas as all land used by the mining sector at any step in extraction and 
processing at the mining site. Our mining areas also cover all 111 different commodities reported in the SNL 
database, including primary and companion commodities (see the complete list of commodities in Table 1). 
This definition includes different ground features, such as open cuts, tailings dams, waste rock dumps, water 
ponds, processing plants, and other infrastructure used in LSM and ASM activities. We mapped all underground 
and above-ground mining infrastructure visible on the satellite images. We did not distinguish between the 
different infrastructure types, i.e. we aggregated them into a single mining land-use class that includes all the 
above-mentioned ground features. Following this approach, we produced a global dataset with the georeferenced 
extent of mining land use that can be used as a starting point to distinguish LSM and ASM and their different 
infrastructure types in future work.

Delineation of mining areas. The new version of the data set significantly improved temporal consistency. 
In the previous version, we used images from Google Earth imagery, Microsoft Bing Imagery and Sentinel-2 
cloudless25. However, Google Satellite and Microsoft Bing Imagery provide heterogeneous spatial resolution 
across the globe, and in many areas, their images are outdated by several years26. For the update, we delineated the 
areas always using the 2019 Sentinel-2 cloudless mosaic, which provides homogeneous 10 m spatial resolution 
and a well-defined time frame for the entire globe25. We only consulted Google Earth and Microsoft Bing for addi-
tional information in case of doubt about a ground feature but did not use these images to delineate the mines.

All three satellite data sources were visually inspected using our open-source web application27 developed for 
this specific purpose. The web interface systematically displays buffers and markers with information about the 
mines, which were used to limit the study area and to provide additional information about mining types and 
commodities. After visually inspecting all satellite data sources, the interpreter delineated the mining areas using 
Sentinel-2 cloudless25 as the background layer. Note that we did not map mining features in regions where the 
quality of the images did not allow proper interpretation. However, only a few of the inspected locations were 
unclear because the Sentinel-2 cloudless layer by EOX mosaics all acquisitions from one year to produce yearly 
composites with significantly reduced cloud cover and atmospheric interference25.

The mining polygons can also contain isolated patches with forest or other land covers, not necessarily rep-
resenting any land cover related to mining activity. We included these isolated patches on the mining polygons 
because they usually do not have other use and have a reduced ecological function as landscape fragmentation 
reduces the ability of the ecosystem to provide ecosystem services28.

It is important to note that we could not keep the relation between the SNL coordinates and the delineated 
polygons. In most cases, SNL provides several coordinates clustered around a number of mining ground features 
identified in the satellite images. However, the information from satellite images is not sufficient to link these 
features with the SNL coordinates without additional fieldwork. Besides that, some mines displace waste dumps 
and other infrastructure several kilometres from the main mining site, making it difficult to confidently link 
them to the coordinates using only information from satellite images. Therefore, our methodology uses the SNL 
coordinates only to gather information on the locations where mining might occur, but our final data product 
does not include information or links to the SNL database such as coordinates, commodities or production 
volumes.
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Geoprocessing of data records. The delineated mining areas produced a raw data collection of poly-
gons, which were checked and corrected by geoprocessing operations in R using the packages sf29 and s230. We 
removed the double-counting of mining areas by uniting overlapping polygons and corrected all invalid geome-
tries, for example, due to crossing edges accidentally created during the digitalisation of the polygons. After that, 
we removed sliver polygons (unwanted small polygons) and polygons with persistent invalid geometries, finally 
producing a consistent set of polygons simple features29.

We then calculated the area of each feature and added information on the country in which each polygon 
is located. We calculated the area in square kilometres using spherical geometry30. After that, a spatial join 
query acquired country names and ISO 3166-1 alpha-3 codes from the country’s administrative units geome-
tries available from EUROSTAT31. The final set of polygons thus includes the geometries (polygons) covering 
the mining areas, their respective areas in square kilometres, country name, and ISO 3166-1 alpha-3 code of the 
corresponding country.

Similarly to Version 1, we also derived global grid datasets with the mining area at 30 arcsecond, 5 arcminute 
and 30 arcminute spatial resolution (approximately 1 × 1 km, 10 × 10 km and 50 × 50 km at the equator). This is 
useful as many modelling applications require regular grid data32. The 30 arcsecond grid was derived from the 
percentage of the polygons’ area intersecting each cell. The percentages were rounded to zero decimal digits to 
reduce the size of the dataset. Therefore, the percentage of mining area covering a cell should be greater than 
0.5% to be considered, i.e., approximately 0.5 ha at the equator. To obtain the gridded mining area, we estimated 
the area of each cell in square kilometres and multiplied it with the percentage of mining cover per cell, resulting 
in a 30 arcsecond global grid indicating the mining area within each cell. The other two grid levels, 5 arcminute 

Commodity name (Number of mines reporting the commodity)

Gold (17526) Yttrium (69) Lutetium (9)

Copper (8699) Potassium Oxide (68) Thulium (9)

Silver (7215) Barite (53) Borates (8)

Coal (5164) Rhenium (47) Erbium (8)

Zinc (4168) Scandium (47) Holmium (8)

Lead (3337) Magnesium (44) Limestone (7)

Iron Ore (2280) Iridium (39) Osmium (7)

U3O8 (2013) Leucoxene (39) Selenium (7)

Nickel (1951) Thorium (38) Alumina (6)

Diamonds (1515) Cadmium (36) Hafnium (6)

Molybdenum (1461) Ruthenium (36) Beryl (5)

Cobalt (1079) Caesium (35) Ferrochrome (5)

Platinum (1024) Indium (33) Ferrovanadium (5)

Palladium (972) Tellurium (31) Gypsum (5)

Rhodium (578) Beryllium (29) Aggregates (4)

Lanthanides (533) Spodumene (29) Aluminum (4)

Lithium (490) Chromium (26) Sapphire (4)

Tungsten (424) Cerium (25) Strontium (4)

Tin (419) Neodymium (25) Emerald (3)

Manganese (353) Iron Sand (24) Ferrotungsten (3)

Graphite (333) Rare Earth Elements (24) Kaolin (3)

Phosphate (325) Rubidium (23) Calcium Carbonate (2)

Magnetite (295) Mercury (22) Hematite (2)

Vanadium (290) Gallium (20) Jade (2)

Potash (262) Lanthanum (20) Platinum Group Metals (2)

Tantalum (242) Praseodymium (20) Potassium Sulfate (2)

Bauxite (241) Dysprosium (17) Topaz (2)

Chromite (217) Germanium (14) Vermiculite (2)

Titanium (191) Silica (14) Asbestos (1)

Antimony (190) Terbium (14) Boron (1)

Ilmenite (181) Europium (13) Ferromanganese (1)

Niobium (174) Samarium (13) Frac Sand (1)

Zircon (171) Garnet (12) Heavy Rare Earths and Yttrium (1)

Rutile (152) Potassium Chloride (11) Marble (1)

Heavy Mineral Sands (150) Gadolinium (10) Promethium (1)

Bismuth (99) Ytterbium (10) Ruby (1)

Arsenic (70) Ferronickel (9) Sodium Bicarbonate (1)

Table 1. List of all commodities reported in the SNL database.
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and 30 arcminute, were resampled from the 30 arcsecond grid. The scripts used in the geoprocessing of data 
records are available with our open-source web application tool27.

Data Records
The new dataset consists of 44,929 polygon features covering 101,583 km2 of mining areas worldwide33. It more 
than doubles the number of polygons compared to Version 1 (21,060 polygons) and nearly doubles the mapped 
area, previously 57,277 km2 21. The number of countries covered also increased from 121 to 145. Besides the poly-
gons, grid data provides a ready-to-use dataset for modelling with the mining area in square kilometres per grid 
cell provided at 30 arcsecond, 5 arcminute, and 30 arcminute spatial resolution. All data records were deposited to 
PANGAEA (Data Publisher for Earth & Environmental Science) and are available from https://doi.org/10.1594/
PANGAEA.942325. The data is also available for visualisation from our platform www.fineprint.global/viewer. 
In what follows, we present a few examples to illustrate the data and provide an overview of the global mining 
land use compared to the first version of the data.

Examples of mapped areas. The maps in Fig. 1 show examples of LSM and ASM. The map in the top right 
of Fig. 1 illustrates the spatial pattern of ASM gold mining in the Brazilian Amazon. In this region, mining activ-
ities can spread over hundreds of kilometres, usually following water streams34. The same spatial pattern can be 
found in other areas worldwide, such as in Ghana35. In the bottom right of Fig. 1 we illustrate LSM areas with an 
example of the Toquepala copper mine in Peru. We invite the reader to explore other regions in our web platform 
at www.fineprint.global/viewer.

Fig. 1 Mapped small- and large-scale mining in South America. (a) Small-scale gold mining in the Brazilian 
Amazon on both sides of the Tapajós River in the Brazilian state of Pará. (b) Toquepala copper mine in Tacna 
Province, Peru.

https://doi.org/10.1038/s41597-022-01547-4
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Global mining land use. Figure 2 shows the geographical distribution of the mining area across the globe. 
The map in the figure is projected to equal area Interrupted Goode Homolosine and the mining areas resampled 
to a 50 × 50 km grid to facilitate visualisation. Except for Antarctica, mining spreads across all continents with 
some hot-spot regions, for example, in northern Chile mainly due to copper extraction, northeastern Australia 
and East Kalimantan in Indonesia because of coal mining, and in the Amazon rain forest primarily due to 
small-scale gold mining.

A summary of our data aggregated by country shows that 52% of the mapped mining area is concentrated 
in only six countries: Russia, China, Australia, the United States, Indonesia, and Brazil. Another 21 countries 
account for 39%, and the remaining 118 countries add up to only 9% of the total mapped mining area (see 
Fig. 3). These results show that mining areas are highly concentrated in only a few countries.

Compared to the area mapped in Version 1 of the dataset23 (dashed bars in Fig. 3), we see that the ranking of 
countries has changed. Russia, for instance, held the fourth position in the first version, but is the country with 
the largest mining land use in Version 2. The large difference is due to the substantial increase in the number 
of regions visually inspected, including the buffer around all coordinates reported in the SNL database inde-
pendently from their activity status or reported production. This allowed us to identify ongoing mining activities 
from the satellite images in many regions with no reported production and to significantly improve the coverage 
of global mining land use. The substantially larger area mapped in Version 2 (nearly double the area mapped in 
Version 1), also indicates that mineral extraction amounts are underreported in the SNL database. This can have 
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implications for studies that rely on SNL’s production data and urges for more transparency on the quantities of 
material extracted in mines worldwide.

Figure 4 highlights the spatial distribution of the difference in the area mapped in Version 2 compared to 
Version 1 within a 50 × 50 km grid. Most grid cells increased their mapped area between three and five square 
kilometres. Some regions also reduced the mining area from Version 1 to Version 2. However, this decrease was 
not caused by abandoned mine sites nor rehabilitation, but it is an artefact of the more accurate delineation of 
the borders of the polygons in Version 2. In the map, we can also note a few hotspots with a substantial increase 
in the mining area, e.g. Brazil, Guyana, Suriname, Ghana, and Indonesia, mostly due to the better coverage of 
ASM on river and water streams in Version 2.

Table 2 presents a summary of the area and number of polygons per country, illustrating different profiles of 
countries regarding the spatial distribution of the mines. For example, Russia and China have comparable fig-
ures regarding total mapped mining areas, 11,770.93 km2, and 10,364.57 km2. However, the number of identified 
polygons in China was significantly higher than in Russia, 8,795 against 2,825. This indicates structural differ-
ences in the mining sectors, i.e. a larger number of mining areas of smaller size in China compared to Russia, 
highlighting the known presence of a small-scale mining industry in China36,37.

Technical Validation
The mapping work was performed by trained interpreters exclusively using satellite images. Most mining areas 
are identifiable in the satellite images for the human eye. However, some areas can be challenging to interpret, 
creating a source of commission (no-mine areas mapped as mines) and omission errors (mine areas not mapped 
as mines). Besides that, the borders of the mines are not always evident in the images, creating another source of 
uncertainty.

We performed an independent classification of random points to assess these mapping errors. We followed 
the best practices on map accuracy assessment and sample design for overall accuracy, user’s accuracy (or com-
mission error), and producer’s accuracy (or omission error)38. We drew a set of 1,220 random points stratified 
between the area mapped as mine and those not mapped as mine (no-mine) within the region of interest (10 km 
buffer from the geographical coordinates). These validation points were inspected independently by experts that 
did not participate in the delineation of the mines. They classified these validation points as mine or no-mine 
based on the satellite data without information on whether the points were mapped as part of a mining area. The 
validation points are also available from the data record33.

Based on these control points, we provide a range of assessment metrics. The overall accuracy shows that 
88.3% of the control points were correctly classified, and the high F1 score of 0.87 indicates a low penalisation for 
false negatives39. The Kappa index was 0.77 and Matthews correlation coefficient (MCC) 0.78 (Kappa and MCC 
range from −1 to 140). Negative values imply that the agreement is worse than random; 1 presents a complete 
agreement, while 0 is the expected value for a random classification). Our dataset also had an 89.7% probability 
of correctly distinguishing mining from non-mining areas according to the area under the curve (AUC) of the 
Receiver Operating Characteristic (ROC) curve41. We also derived the user’s and producer’s accuracy along with 
the error matrix (see Table 3) as recommended in map accuracy assessment38,42. The user’s accuracy tells how 
well the classes in the map represent the reality on the ground, while the producer’s accuracy points to how well a 
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class has been mapped38. Our map reached a 78.9% producer’s accuracy, indicating that we missed some mining 
areas (the omission of mines was around 21.2% in our validation samples). However, the mapped mining areas 
had 97.2% user’s accuracy, i.e. the mapped mining areas have a high probability of being correctly mapped as 
mining (less than 3% incorrectly mapped as mining).

We also investigated whether the proximity to the borders of the mines has affected the accuracy. We found 
that 54.5% of the control points with disagreement are located less than 50 m from the borders of the deline-
ated polygons. On the other hand, only 16% of points with an agreement are located closer than 50 m to the 
polygons’ borders. These results indicate that higher uncertainty lies closer to the borders of the mapped areas. 
Additionally, it indicates high confidence in the existence of mines within the mapped polygons.

Usage Notes
The global mining dataset described here is available from https://doi.org/10.1594/PANGAEA.942325 under the 
Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA) license. The data records include the 
same resources as the previous data release23 – the mining polygons, validation points, mining area grid, and a 
summary per country’s mining area.

 1. The mining polygons and validation points are encoded in GeoPackage geographic data structures43, such 
that:

 a. the mining_polygons layer has five attributes:
•	 ISO3_CODE: A string with the country’s ISO 3166-1 alpha-3 code
•	 COUNTRY_NAME: A string with the country name in English
•	 AREA: A number with the area of the feature in square kilometres
•	 geom: A polygon geometry in geographical coordinates WGS84
•	 fid: An integer with feature ID

 b. the validation_points layer has four attributes:
•	 MAPPED: A string with the class derived from the mining polygons (“mine” or “no-mine”)
•	 REFERENCE: A string with the validation class (“mine” or “no-mine”)
•	 geom: A point geometry in geographical coordinates WGS84
•	 fid: An integer with feature ID

 2. The mining grids include a single layer each (one band raster) encoded in Geographic Tagged Image File 
Format (GeoTIFF)44. Each grid cell over land has a float number (data type Float32) greater than or equal 
to zero representing the mining area in square kilometres; grid cells over water have no-data values. The 
grid is available in three spatial resolutions, 30 arcsecond, 5 arcminute, and 30 arcminute, extending from 
the longitude −180 to 180 degrees and from the latitude −90 to 90 degrees in the geographical reference 
system WGS84.

 3. The summary of the mapped mining area per country derived from the mining polygons is available in 
Comma-separated values (CSV)45 format, including four attributes:
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Fig. 4 Global overview of additional mining area mapped in Version 2 compared to Version 1, aggregated to 
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•	 COUNTRY_NAME: A string with the country name in English
•	 ISO3_CODE: A string with the country ISO3 code
•	 AREA: A number with the area of the feature in square kilometres
•	 N_FEATURES: An integer with the number of features per country

Country km2 n Country km2 n Country km2 n

RUS 11,770.93 2,825 CZE 165.88 73 ETH 16.30 33

CHN 10,364.57 8,795 SWE 159.29 219 CYP 16.27 32

AUS 8,482.63 3,416 SRB 149.67 192 PAN 15.57 21

USA 8,188.54 3,899 TZA 146.60 225 LBR 15.13 51

IDN 8,020.15 1,448 FIN 143.90 288 AUT 14.94 48

BRA 5,915.79 2,427 NER 127.52 35 GEO 14.60 9

CAN 5,087.56 2,828 KGZ 126.61 105 URY 13.45 28

CHL 4,562.65 697 MOZ 123.42 72 JPN 13.22 47

ZAF 3,594.62 1,526 CUB 118.32 65 TKM 13.07 3

PER 3,539.54 852 NZL 118.08 181 LSO 12.20 9

GUY 2,388.75 456 MRT 114.89 43 MNE 10.87 13

ARG 2,301.00 334 BFA 112.51 89 ERI 10.63 6

IND 2,293.41 1,204 MYS 112.12 118 GTM 10.60 20

MMR 2,140.09 170 SAU 111.40 74 COG 10.37 26

KAZ 2,082.59 656 CIV 107.30 44 LKA 10.12 45

SUR 1,972.02 306 SLE 88.51 104 HND 9.66 16

GHA 1,882.81 577 PNG 77.30 38 IRQ 8.85 4

VEN 1,401.40 105 TUN 75.48 25 AFG 6.79 10

MEX 932.22 1,583 EGY 72.75 29 SLB 5.93 3

UKR 877.10 707 HUN 71.39 110 TGO 5.43 3

MNG 782.92 429 ECU 71.02 97 MWI 5.00 14

COL 772.43 219 ESH 62.91 3 KHM 4.60 16

TUR 769.49 911 SEN 58.96 27 CMR 4.41 5

DEU 550.87 146 LAO 56.49 56 ARE 4.21 6

NAM 494.68 262 ISR 55.26 10 FJI 3.53 18

ZMB 480.05 149 MKD 53.57 34 PRY 3.52 29

UZB 468.39 73 GAB 51.84 13 HTI 3.36 10

COD 426.22 223 SDN 50.95 33 UGA 3.14 17

MAR 369.73 96 MDG 44.47 63 BEL 1.91 3

IRN 363.08 167 ARM 43.40 71 SVN 1.75 4

POL 331.66 218 DZA 42.77 97 RWA 1.64 16

BWA 315.20 171 PRT 39.94 162 LUX 1.42 5

PHL 302.68 350 KOR 39.11 125 NLD 1.42 8

AGO 294.51 218 NOR 35.88 109 CRI 1.36 4

ESP 292.44 256 TJK 34.23 67 BGD 1.27 2

BOL 286.77 138 DOM 31.18 29 SJM 1.03 3

JOR 263.89 46 BIH 29.06 14 SOM 0.70 3

VNM 263.31 146 IRL 25.81 97 SLV 0.59 5

NCL 251.66 158 JAM 25.62 56 CHE 0.55 10

ZWE 242.48 320 BLR 24.69 6 GRL 0.36 2

GIN 231.34 128 NGA 24.65 70 ABW 0.36 2

BGR 226.15 109 AZE 24.59 25 SWZ 0.33 2

GRC 216.26 73 PRK 24.52 30 TCD 0.20 2

OMN 201.53 110 KEN 23.52 29 BEN 0.11 2

FRA 199.46 158 ITA 23.30 76 BDI 0.08 1

MLI 194.94 78 PAK 22.80 28 GNB 0.06 2

ROU 176.98 94 SVK 19.43 94 ISL 0.05 1

THA 168.98 81 ALB 17.20 91

GBR 168.91 203 NIC 16.98 28

Total Area: 101,583.4 km2; Polygons: 44,929; Countries: 145

Table 2. Mining area in km2 and the number of polygons (n) mapped per country. The countries are indicated 
by their respective ISO 3166-1 alpha-3 code.
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The datasets can easily be overlaid with other geospatial variables for further spatial analysis using software 
with support Geographic Information System (GIS) (e.g. including QGIS46, R47, and Python48). Besides, we also 
provide a tool for visual analysis of the geographical data records at www.fineprint.global/viewer and a Web Map 
Service (WMS)49 accessible from www.fineprint.global/geoserver/wms.

code availability
All the code and geoprocessing scripts used to produce the results of this paper are distributed under the GNU 
General Public License v3.0 (GPL-v3)50 from the repository www.github.com/fineprint-global/app-mining-area-
polygonization27. The processing scripts were written in R47, Python48, and GDAL (Geospatial Data Abstraction 
Library51). The web application to delineate the polygons was written in R Shiny52 using a PostgreSQL53 database 
with PostGIS54 extension for storage. The full app setup uses Docker54 containers to facilitate management, 
portability, and reproducibility.
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